
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 1

Human-Agent Collaboration for Time Stressed
Multi-Context Decision Making

Xiaocong Fan, Senior Member, IEEE, Michael McNeese, Bingjun Sun, Timothy Hanratty, Laurel Allender,
and John Yen, Fellow, IEEE,

Abstract— Multi-context team decision making under time
stress is an extremely challenging issue faced by various
real world application domains. In this study we employ an
experience-based cognitive agent architecture (R-CAST) to ad-
dress the informational challenges associated with military com-
mand and control (C2) decision making teams, the performance
of which can be significantly affected by dynamic context
switching and tasking complexities. Using context switching
frequency and task complexity as two factors, we conducted an
experiment to evaluate whether the use of R-CAST agents as
teammates and decision aids can benefit C2 decision making
teams. Members from a US Army ROTC (Reserve Officer
Training Corps) organization were randomly recruited as human
participants. They were grouped into ten Human-Human teams
each composed of two participants and ten Human-Agent teams
each composed of one participant and two R-CAST agents
as teammates and decision aids. Statistical inference of the
experiment results indicates that R-CAST agents can significantly
improve the performance of C2 teams in multi-context decision
making under varying time-stressed situations.

Index Terms— Human-Centered Computing, Cognitive Agents,
Context Switching, Naturalistic Decision Making.

I. INTRODUCTION

TEAM decision making involving multiple contexts is an
extremely challenging issue faced by various real world

application domains [1], [2], [3], [4]. Military command and
control (C2) in complex urban terrain is one of such domains,
where C2 teams have to frequently confront the so-called
three-block challenge [5]—conducting humanitarian, peace-
making, and combat missions in close proximity (i.e., involv-
ing three contexts that overlap in time). Multi-context team
decision making is challenging because it requires effective
team collaborations in rapidly gathering dynamic information
from multiple sources (collateral space), in proactively sharing
relevant information for establishing situation awareness, in
managing and reasoning across multiple decision spaces for
different contexts (areas of interest), and in choosing optimal
courses of action.

In the Multi-Agent Systems (MAS) research area, there
has been an increasing interest in empowering agents with

Manuscript received January 20, 2007. This work was supported as an FY06
Research Task under the Army Research Laboratory’s Advanced Decision
Architectures Collaborative Technology Alliance (ARL ADA CTA).

X. Fan is with the Pennsylvania State University, email: xfan@psu.edu.
M. McNeese is with the Pennsylvania State University, email: mmc-
neese@ist.psu.edu. B. Sun is with the Pennsylvania State University, email:
bsun@cse.psu.edu. T. Hanratty is with US Army Research Lab, Aberdeen
Proving Ground, email: hanratty@arl.army.mil. Laurel Allender is with US
Army Research Lab, Aberdeen Proving Ground, email: lallende@arl.army.mil.
J. Yen is with the Pennsylvania State University, email: jyen@ist.psu.edu.

naturalistic decision making models to better support human-
agent collaboration in making decisions under time stress [6],
[7], [8], [9], [10]. One particular model is Klein’s Recognition-
Primed Decision framework (RPD) [11]. The RPD model is
based on the supposition that in complex situations human
experts usually make decisions based on the recognition of
similarities between the current decision situation and previous
decision experiences [12]. Cognitive studies have shown that
over 95% of human decisions conform to the RPD model
in various time-stressed situations [12]. Norling, Sonenberg,
and Ronnquist [7] have examined the integration of RPD
model into a BDI agent framework. Fan, Sun, McNeese,
and Yen have implemented an RPD-enabled cognitive agent
architecture (R-CAST) [6] and evaluated the performance
gains when human members were assisted by R-CAST agents
in their time-stressed decision making.

However, multi-context decision making has attracted little
attention from the MAS field especially when considered
from the human-centered teamwork perspective. Norling et
al.’s work [7] only explored ways of using reinforcement
learning to enhance situational recognition. While Fan et al.’s
attempt [6] centered on human-agent collaboration in the
decision making process, they only investigated the impact
of an adaptive decision making mechanism, with the issue
of multi-context decision making left open. Although RPD-
enabled agents were employed to start addressing the issue
of multiple contexts [5], experimental studies are still needed
for fully understanding the nature of multi-context decision
making, which is critical for further development of agent
technologies to enhance the performance of human-centered
teamwork.

This research couples human-centered teamwork and cog-
nitive agent technology to address team decision making
challenges. Human-centered teamwork can be viewed as a sub-
area of Multi-agent teamwork [13], which is concerned with
joint commitments and joint responsibility. Human-centered
teamwork argues for stronger interaction between software
agents and their human peers. Within teamwork, both humans
and agents are jointly responsible for establishing mutual
situation awareness [14], developing shared mental models as
situations evolve, and adapting to mixed-initiative activities.
If agents could effectively collaborate with human peers, then
they potentially offer humans an opportunity to pay attention
to more important activities [15], and to make better decisions
that take advantage of information with greater accuracy and
finer granularity [16].

Previous studies on human-centered agent-based teamwork

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 2

include KAoS [15] and MokSAF [16]. KAoS captures a
collection of agent services in the form of adjustable policies,
which allow the renegotiation of roles and tasks among
humans and agents when new opportunities arise or when
breakdowns occur. MokSAF is a computer-based simulation
system developed to evaluate how humans can interact and
obtain assistance from agents within a team environment.
However, neither directly touched the issue of multi-context
decision making under time stress.

Case-based reasoning (CBR) [17], [18], [19] is another
psychological theory of human cognition, focusing on the pro-
cess of reminding (experience-guided reasoning) and learning.
While there is no clear line between RPD and CBR as far as
their process models are concerned, RPD focuses more on
time-sensitive recognition refinement.

For this study we employ an experience-based cognitive
agent architecture (R-CAST) to address the challenge of multi-
context decision making associated with C2 teams. In partic-
ular, we examine the potential impacts of R-CAST agents,
when acting as human’s teammates and decision aids, on
the performance of C2 teams in making decisions involving
multiple contexts and significant time stress. The remainder
of this paper is organized as follows. The background of
R-CAST agent architecture and its features pertinent to this
study are given in Section II. The problem domain, experiment
design, and tasks are described in Section III. The details of
experimental apparatus are presented in Section IV. Section
V reports major findings from the study, and Section VI
concludes the paper.

II. THE R-CAST AGENT ARCHITECTURE

The R-CAST agent architecture [6] is built on top of the
concept of shared mental models [20], the theory of proactive
information delivery [21], and Klein’s Recognition-Primed
Decision (RPD) Model [11].

The major components of R-CAST is depicted in Figure
1. The “RPD Engine” module implements a recognition
cycle as prescribed in the RPD theory. The cycle starts
with “Situation Awareness”, where an R-CAST agent uti-
lizes the inference knowledge and past experience knowledge
to generate/synthesize a recognition of the current decision
situation. A recognition has four constructs: relevant cues
(what to pay attention to), plausible goals (which goals make
sense), expectancy (what will happen next), and courses of
action (what actions worked before). The invalidation of
an expectancy may indicate that the once workable course
of action (COA) may become no longer applicable to the
changing situation. Thus, an R-CAST agent keeps monitoring
the status of the expectancy so that it can further adapt the
recognition or, if necessary, start a new recognition cycle.
The execution of a COA can involve inter-agent (taskwork)
and intra-agent (teamwork) activities, which are coordinated
by the “Process Manager”. The experience knowledge can be
gradually expanded with experience newly synthesized by an
agent during the recognition cycle (Experience Adaptation).

One of the biggest challenges to develop cognitive agents
for supporting human-centered computing is how to represent

RPD Engine

Experience

Adaptation

Situation

Awareness

Expectancy

Monitoring

Context Manager

Situation

Recognition

Recognition

Adaptation

Inference

Knowledge Experience

Space

Experience

Space

Experience

Knowledge
Procedural

Knowledge

Process Manager

Individual

process

Team

process

Mental Model

Shared

Mental

Model

Process Context Recognition Context Inference Context

Fig. 1. Major components of R-CAST.

and reason about the contextual needs of collaboration. R-
CAST implements a context manager that distinguishes three
types of context: process context, recognition context, and
inference context. These three types of context together enable
an R-CAST agent to effectively identify information needs of
other team members, to quickly adapt decisions to a dynamic
environment, and to facilitate the reuse of inference knowledge
in various means-ends reasoning activities. We next describe
each of the three contexts.

A. Decision Process Context

A process context refers to the progress of the on-going
processes, each of which may involve an individual agent or
a team of agents. It is argued that teamwork progress can be
employed as part of a shared mental model for an agent to
progressively infer other’s information needs [22].

The RPD process has been considered as an internal process
of an individual decision maker. In order to enable close
human-agent collaboration during the decision process, R-
CAST implements a ‘collaborative-RPD process’. Managing
the RPD process at the team level enables an R-CAST agent
to establish a shared mental model with its human peer about
the dynamic progress of the decision process being pursued.
Equipped with such a shared mental model, the agent is able
to offer context-aware computing to, and reduce its cognitive
gap with, its human peer.

The decision process context (a component of the process
context as shown in Fig. 1) captures the progress of the
current decision making task along the RPD process, including
information collection, situation recognition (feature matching
and story building), recognition consolidation, expectancy
monitoring, recognition adaptation and COA evaluation. The
decision process context is implemented as a view on the GUI,
and it is directly manipulable to the human peer. In such a
sense, it is at a higher level than the other two types of context,
which are used in an agent’s internal reasoning only.

Knowing of the progress of his/her agent encourages the
human peer to focus his/her cognitive attention on the activity
that the agent is currently working on so that the human
could adjust the agent’s behavior at the earliest opportunity;
this is a step towards ‘just-in-time’ adjustable autonomy.
For instance, anomalous situations can happen frequently in

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 3

a dynamic environment. During a decision process, both a
human decision maker and his/her agent need to monitor the
expectancy associated with the current recognition, and to re-
assess the recognition to determine how to best respond to an
anomaly when it emerges. For example, suppose for a given
situation it is expected that two crowds, G1 and G2, should be
active in two isolated regions. When G1 and G2 start to move
closer and merge, an R-CAST agent detects the anomaly and
decides to adapt the chosen COA. However, the human peer
may override the agent’s decision, choosing to collect more
situational information and start a new recognition cycle.

B. Recognition Context

R-CAST uses the concept of “decision space” (DS) to
organize experiences by decision themes: experiences related
to one decision theme are maintained in one decision space.
Each experience is of form (S, E, COA), where S is a collec-
tion of cues describing a past situation, E if a collection of
expectancy, and COA is the name of a course of action worked
before. Cues and expectancy are represented by predicates,
while COAs are written in a variant of the process language
MALLET [23], where each process can be associated with
preconditions and escape conditions (first-order expressions).

The following is an example experience:

(Experience e26
(Cue (Close_enough ?crowd1 ?crowd2))
(Expectancy (Move_closer ?crowd1 ?crowd2))
(Anomaly (Move_away ?crowd1 ?crowd2))
(Goal (peacekeeping yes))
(Action (Alert_converged_threat)))

It says that experience “e26” applies to the cases where
two crowds are coming close enough, and it is expected
that they are moving closer; if this is the case, the process
“Alert converged threat” is triggered; if it turned out that the
crowds moved away, the process would be terminated.

Experiences in a decision space are organized hierarchically
in a “tree-like” structure (experience tree): an experience at
a higher level node is refined by its children at a lower
level (i.e., experiences at a lower-level consider more relevant
cues and expectancy). Given a decision task, an R-CAST
agent first starts with the root (most abstract experience) of
the current experience tree. As more and more information
becomes available (e.g., some expectancy is confirmed as the
situation evolves), potential patterns for further situation evo-
lution become more predictable, and the agent’s recognition of
a workable experience becomes more and more fine-grained
(reaching the lowest possible level of the hierarchy).

An R-CAST agent uses “recognition anchors” to mark the
nodes that it believes are closest in similarity to the current
situation. A recognition anchor helps an agent to determine
the collection of cues and expectancy that needs to considered
in the recognition cycle. In addition, when an anomaly occurs,
a recognition anchor allows an agent to easily backtrack to an
upper level of the experience tree to seek a better solution with-
out necessarily invoking the time-consuming feature-matching
computation.

A recognition context refers to the collection of all the
recognition anchors being considered by an agent. Note that
an agent can manage and work with multiple decision spaces
simultaneously, each of which may be a forest of experience
trees, and moreover, it can place more than one recognition
anchor on multiple branches of an experience tree at different
levels. Each experience node has a flag indicating whether
the node is recognition-anchored by the agent or not. When
multiple R-CAST agents form a decision-making team, it is
beneficial to allow the agents to exchange their respective
recognition anchors so that they could proactively help each
other with missing information pertinent to the current con-
text. A simple way to encode the recognition anchors of an
experience tree is to traverse the tree in certain order (e.g.
preorder) to generate a bit string where 1 (0) indicates the
corresponding node is (not) anchored. An agent may choose
to inform other agents of the bit string of the experience tree
being worked on, or to share the whole recognition context
(bit strings of all the experience trees).

An agent (human) working in high demand situations often
needs to switch attention among multiple active decision tasks.
For instance, as the situation changes, an agent may need to
switch from handling battlefield tasks to handling firefighting
tasks (between-domain context switching), or simply switch
from peacekeeping to humanitarian operations (within-domain
context switching). For example, a C2 team may decide to
adjust the military forces allocated to a humanitarian mission
to a peacekeeping mission prompted in a nearby location,
as more and more field reports indicate that the situation
there might evolve in an undesirable direction. Even for this
within-domain context switching, the agent has to keep track
of the evolution of both the humanitarian mission and the
peacekeeping mission so that it can coordinate activities such
as resource allocation and information sharing between the
two missions and among other members of the C2 team.

The notion of recognition anchor facilitates an agent to save
and restore recognition contexts. For between-domain context
switching, an agent needs to freeze the recognition context
of the current decision space then defreeze the recognition
context of another decision space, while for within-domain
context switching, an agent only needs to freeze the recogni-
tion context of the current experience tree then defreeze the
recognition context of another experience tree. This feature
was exploited in our experiment (cf. Section IV) to configure
decision aids that can dynamically switch among multiple
within-domain tasks: humanitarian, peacemaking, and combat
contexts (here we reuse the word ‘context’ to refer to tasking
contexts, which should not be confused with the three agent
contexts as shown in Figure 1).

C. Inference Context

The inference context captures inference knowledge that
links high-level information needs to lower-level information
that is directly obtainable from a wide variety of sources. For
example, a cue used to describe a situation is a high-level
information need, which can be the root of an inference tree
consisting of many other intermediate or directly-observable

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 4

types of information. This is typical in real-world domains
and it is exactly why collaborative computing and distributed
cognition (the kind of cognition teams engage in when the task
is complex and constraining) play a key role here, because one
single agent/human simply cannot handle the complexity due
to lack of sufficient expertise, inference knowledge, etc.

The inference context is used in two ways in R-CAST. First,
it is used to relate high-level information needs, once they are
identified, to low-level information, and to identify missing
relevant information. Second, the inference context is used
to aggregate lower level information, once it is available, to
higher level cues. Separating the inference context from the
decision process context and the recognition context allows a
piece of inference knowledge to be used in multiple phases
of a process, and for multiple experience trees. For instance,
inference knowledge that relates shipping density in an area to
geopolitical cost can be used to evaluate a COA in responding
to a threat. The same knowledge can also be used for feature-
matching, if the cue of an experience involves geopolitical
cost, and for expectancy monitoring.

In sum, to better support human teams to make decisions
involving multiple types of tasks, R-CAST has been developed
with a context manager that reflects how a human adapts
his/her decisions in a dynamic environment, as well as sup-
ports the identification and satisfaction of other team members’
information needs pertinent to the current context.

III. TASK DESCRIPTION AND EXPERIMENT DESIGN

Our problem domain involves C2 teams reacting to potential
threats that emerge unexpectedly in an urban area. It imposes
challenging information demands associated with the com-
mand and control of urban operations, including humanitarian,
peacekeeping, and combat operations.

The simulation environment contains three types of threats:
Improvised Explosive Devices (IEDs), crowds, and insurgents,
which represent the targets of humanitarian, peacekeeping, and
combat operations, respectively. IEDs are motionless targets,
and if exploded, can cause damage to the nearby objects.
A crowd represents a group of people which may contain
activists that can be friends or foes. A crowd can be of medium
(M) or large (L) size, and the group size of a crowd can change
over time. Two crowds can merge together if they move close
enough. Another type of movable targets is insurgents, each is
associated with a threat level that can be L (low), M (medium),
or H (high).

Other objects of interest in the environment are main supply
routes (MSRs) and three types of key buildings: religious
buildings, schools, and hospitals. There are also limited num-
ber of friendly units, squads and Explosive Ordnance Disposal
(EOD) teams, under the control of a C2 team.

We next present the task description, knowledge acquisition
for R-CAST agents, and the design of a human-in-the-loop
experiment with R-CAST agents as teammates and decision
aids.

A. Task Description
In this study, a C2 team consists of an S2 suite (intelligence

cell) and an S3 suite (operations cell). Each human operator of

a C2 team has equipment with two monitors: a map display for
tracking situation development, and a graphical user interface
(GUI) for collaborating with teammates to handle threats.

The roles of C2 operators have been simplified. S2 is
responsible for processing incoming reports, called Spot re-
ports; collecting relevant information from another source– a
simulated Military Intelligence Database (MIDB); and alerting
S3 of potential threats. S3 needs to process alerts from S2,
and make decisions on which target to handle next and which
resources (friendly units) to allocate toward that target.

In particular, the tasks of S2 suite include:
1. Focus attention on an active target pertinent to the current

context (humanitarian, peacekeeping, or combat);
2. If the target is a crowd c:

i. If c is unknown to S3, then alert S3;
ii. If the size of c changes, then alert S3;

iii. If there are unknown activists associated with c, then
query MIDB to figure out whether the activists are
friends or foes, alert S3 afterward;

iiii. If c is moving closer to a key building or a supply
route, query MIDB to check whether c is close
enough to impose a threat. If so, alert S3;

3. If the target is a key insurgent k:
i. If k is unknown to S3, then alert S3;

ii. If the threat level of k is unknown, then query MIDB
to figure out the threat level, alert S3 afterward;

iii. If k is moving closer to a key building or a supply
route, query MIDB to check whether k is close
enough to impose a threat. If so, alert S3;

4. If the target is an IED i:
i. If i is unknown to S3, then alert S3;

ii. Query MIDB to check whether i is close enough to
a key building or a supply route to impose a threat.
If so, alert S3;

5. Repeat [1–4] for another active target, if any changes
happened.

The tasks of S3 suite include:
1. Select an active target to handle. It is critical to prioritize

the order of operations on the active targets. It is prefer-
able to first handle targets with a higher level threat.

2. Allocate resources (friendly units) to the selected target.
Free resources that are closer to the selected target are
preferred. Resources already engaged with other targets
can be reallocated if the currently selected target has a
higher level of threat;

3. Monitor the map display to see whether the selected
target, if it is movable, is getting close to or away from
certain key buildings. Mark the nearby buildings, if any,
through S3 GUI;

4. Issue the command to handle the selected target;
5. Repeat [1–4] to handle another active target.

In this multi-tasking environment, resource allocation is a
constraint-satisfaction problem. The S3 suit needs to consider
(a) resource constraints—balancing requirements (resource
type, amount) among multiple targets; (b) utility constraints—
maximizing the number of targets successfully handled; (c)

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 5

TABLE I
REQUIREMENTS ON HANDLING TARGETS

Targets Value Res. req. Action
M w/o foe 20 1U monitor

Crowd M w/ foe 40 (+10)* 2U disperse
L w/o foe 40 (+10)* 2U disperse
L w/ foe 50 (+10)* 3U disperse

Insurgent n=1,2,3 for L,M,H
(3 threat levels: L, M, H) 50+50n (n+1)U capture
IED 0, 60, 80* 1U + 1E remove

‘U’ refers to “squad unit”, ‘E’ refers to EOD team.
*60 if the IED is close to buildings only or MSRs only;

80 if close to both; 0 otherwise.

spatial constraints—others being equal, considering first the
resources closest to a target; and (d) timing constraints—
issuing tasks earlier has a better chance to succeed, due to
the uncertain nature of a target’s lifespan.

B. Expert Knowledge for Agents

As indicated in Figure 1, R-CAST needs three types of do-
main knowledge from external: procedural knowledge (COAs),
inference knowledge (rules), and experience knowledge. To
conduct this experiment (i.e., using R-CAST agents as team-
mates and decision aids), we need to elicit knowledge from
domain experts and empower an R-CAST agent with the
domain knowledge.

We worked with three domain experts on this C2 scenario
and termed it as ‘Three-Block Challenge’: within three-block
area in a city officers in command must react to a constant flow
of intelligence reports and make timely decisions for combat,
peacekeeping and humanitarian operations. We produced high-
level COAs (e.g., QueryMIDB, AlertS3, AlertS4, CancelAlert,
MonitorCrowd, DisperseCrowd, CaptureInsurgent, and Re-
moveIED) that were considered to be critical to the S2 and
S2 roles. Each of these COAs is a process being composed of
lower-level actions like MoveTo, LockTarget, and Fire. The
domain experts also helped with target prioritization, which
allowed us to generate rules, say, for an agent to reason about
the threat level of a target.

Guided by the domain experts, we generated a decision
space composed of three experience trees, one for each of the
three tasking context: combat, peacekeeping and humanitarian
operations. Each experience is of the form of the experience
‘e26’ described in Section II-B, where the Action field takes
values from the high-level COAs mentioned above.

To relate to the real-world demands, we also worked with
the domain experts on how to handle threats. Table I lists for
each type of target the credit value, the number of resources
required to handle a target, and what COA S3 should take.
Typically insurgents impose more threats than IEDs, which
impose more threats than crowds. A credit value is assigned to
a target such that it proportionally reflects how much effort to
take (or reward to claim) for handling the target successfully.

The allocation of friendly units depends on the threat level
and type of the target being considered. For example, the
second entry says dispersion of a medium-sized crowd with a
foe needs two squad units, and 40 points can be credited if the
crowd is dispersed successfully. The last entry says that one

TABLE II
FACTORIAL TREATMENT DESIGN

Context HH HA
Switching Task Complexity Task Complexity
Frequency L M H L M H
L 10 10 10 10 10 10
M 10 10 10 10 10 10
H 10 10 10 10 10 10

squad unit and one EOD team are required to remove an IED.
If successful, 60 points can be credited if the IED is close to
buildings only or MSRs only, 80 points if it is close to both.

C. Experiment Design

For the domain problem described above, we view activities
related to IEDs, crowds, and key insurgents as humanitarian
context, peacekeeping context, and combat context, respec-
tively. A macro context-switching is imposed (to human
operators) when Spot reports from two consecutive cycles
are about different types of targets. In addition, when the
S2 (or S3) suite gets Spot reports (or alerts) about multiple
targets simultaneously, even though they are of the same
type, human operators have to switch their attention back and
forth to handle individual targets. We refer to this as micro
context-switching. Because task difficulty correlates with time
demands [24], varying the number of active targets (i.e.,
controlling micro context-switching) changes how much time
a human operator can take on each target, consequently varies
task complexity. We thus have two factors to control: context
switching frequency (CSF) and task complexity (TC), which
respectively denote how fast a C2 team has to switch among
contexts, and how many active targets a C2 team has to handle
under time stress.

Moreover, our main objective is to understand how R-CAST
agents, acting as teammates and decision aids, may affect C2

performance in multi-context decision making under stress.
We want to distinguish C2 teams with pure human operators
from C2 teams with R-CAST agents acting as decision aids.
This factor is denoted as team type (TType).

In sum, this study examines the effects of three factors
(team type TType, context switching frequency CSF, and
task complexity TC) on the performance of participants in
simulated C2 operations. The TType variable has two levels,
human-human (HH) teams and human-agent (HA) teams,
where an HH team is composed of two human participants
playing the roles of S2 and S3 respectively, and an HA team
is composed of an R-CAST agent playing the role of S2 and
one human participant aided by another R-CAST agent playing
the role of S3. We treat the CSF and TC variables each as
having three levels, namely low, medium, and high. For the
CSF variable, low, medium, and high correspond to updating
the dynamic target information every 15, 10, and 5 seconds,
respectively. For the task complexity variable, low, medium,
and high correspond to each type of threats having 2, 3, or
4 active targets to be handled. For example, when TC=H, the
C2 team needs to face 12 active targets all the time, 4 for each
type (a new target of the same type will pop up when a target
is removed by S3 or disappears by itself).

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 6

Simulation Engine

S2
 Suite

 MIDB

S3
 Suite

SPOT Reports

Threats Alert

Tasking

1

2
 4

(a)

Simulation Engine

S2
 Suite

Situation Analysis

Situation Investigation
 Feature Matching

Expectancy Monitor
 COA
 Evaluation

Implementation

start

end

unfamiliar
 familiar

workable
 unworkable

R-CAST

MIDB

S3
 Suite

Situation Analysis

Situation Investigation
 Feature Matching

Expectancy Monitor
 COA
 Evaluation

Implementation

start

end

unfamiliar
 familiar

workable
 unworkable

R-CAST

SPOT Reports

Threats Alert

Tasking

S2
 Agent

Decision Automation

S3
 Agent

Decision

Aids

1

3

4

5

(b)

Fig. 2. (a) Human-Human (HH) teams; (b) Human-Agent (HA) teams.

In total we designed 9 scenarios reflecting the nine different
CSF-TC combinations. For example, one scenario was de-
signed such that the context is switched every 10 seconds, and
has 3 active targets for each type (9 active targets in total) at
any one time. The scenarios also differ in the settings of initial
locations (targets, MSRs, key buildings, IEDs), itineraries and
velocities of movable targets, sizing of crowds, threat levels of
insurgents, targets’ appearance time, etc. Each scenario lasted
10 minutes. In all the scenarios, S3 suite only had limited
resources under control: 1 EOD team and 9 squad units (they
all moved at the same speeds in the simulation). The goal of a
C2 team is to remove as many threats as possible with limited
resources and varying timing constraints.

As shown in Table II, this is a 2×3×3 factorial treatment de-
sign, and 10 replications are to be collected for each treatment.
Our research problems are (1) Whether the performance of HA
teams is significantly (α = 0.05) different from HH teams; (2)
Whether the CSF and TC factors have significant effects on
the performance of C2 teams; and (3) Whether different level
combinations of CSF and TC have significant effects on C2

team performance. For the first problem, we can formulate a
hypothesis test:

H0 : µHH = µHA,
Ha : µHH 6= µHA.

Hypothesis tests can be formulated for the other two problems
similarly.

IV. EXPERIMENT

In this section, we detail the apparatus, the human subjects,
and the dependent measures used in the experiment.

A. Apparatus

In the order as indicated in Fig. 2, below we describe the
five computational components employed in the experiment.

1) Simulation Engine: The development of simulated field
situations is controlled by the Simulation Engine. The Simula-
tion Engine module has three components: scenario generator,
tasking simulator, and performance evaluator.

The scenario generator accepts script-based description of
target dynamics. At every cycle, the scenario generator creates
a Spot report for each active target based on the script of its
dynamics. Here is an example script of a crowd:

((crowd C221 40.01 -82.06 0.8 10)
(report_key A18 foe 7)(successor C212)
(m 40.04 -84.965 1.0)(m 41.95 -82.975 0.6)
(s 27 20) (s 49 90))

This defines a crowd named C221, that appears at location
(40.01, -82.06) 10 seconds after the system starts, and can
move at full speed of 0.8 u/s. An associated foe activist with
ID A18 shows up 7 seconds later. The crowd moves to (40.04,
-84.965) at its full speed, then moves to (41.95, -82.975) at 0.6
times of its full speed. The crowd size changes to 27 after 20
seconds and to 49 after 90 seconds. The disappearance of this
crowd will trigger another target named C212 to show up. In
general, each target has a lifespan, which depends on whether
a movable target moves to the end of its pre-specified itinerary,
whether it comes to the expiration time of a motionless target,
or whether the target has been successfully handled by the S3
suite, whichever comes first.

Spot reports about situational changes are dynamically gen-
erated and fed to the S2 suite following certain communication
patterns (e.g., sending reports every n seconds; sending reports
of different target types interleavingly in fixed or random
order). The communication pattern can be set prior to each
run, which is flexible, so that it allows, for example, the
setting where reports about crowds are being sent every other
cycle. Upon getting new Spot reports, the S2 suite recognizes
potential threats and decides whether and when to alert the
S3 suite. Thus, although each suite has a map display, the S3
suite may only have a partial view of the current situation.

The tasking simulator manages the tasks issued by the S3
suite by monitoring the engagement (e.g., taskload) of each
squad/EOD unit, tracking the progress of each ongoing task,
and reporting to the scenario generator about any situational
changes effected by the completion of a task.

The performance evaluator records the number of targets
successfully handled; whether the S3 suite paid attention to
the nearby buildings when issuing tasks; how many times all
the resources were fully engaged; how many times S3 canceled
a task that was no longer appropriate as the situation evolved;
how many times resources were wasted on non-threatening
targets (i.e., small crowds, IEDs far away from key buildings
or MSRs); and how many times resources were re-allocated to
another target that could offer a better chance to succeed. The
performance evaluator uses these values to evaluate final team
performance; it does not offer on-line performance feedbacks
to human users.

2) S2 Human-Computer Interface: S2 GUI is used for HH
teams only. The design of S2 GUI was largely influenced by
the domain experts we consulted. A screen shot of S2 GUI is
shown in Figure 3(a). Displayed on the left of S2 GUI are a

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 7

(a) S2 human-computer interface.

(b) Map Display (one for each operator).

Fig. 3. S2 GUI and Map Display.

list of incoming Spot reports and the detail of a report once
it is selected. The upper-left area shows the current macro
context. In the experiment, S2 human participants were asked
to perform communication actions by following the current
macro context as far as they could.

Shown in the list on the upper-right pane is fused infor-
mation about targets, which are categorized into target type,
name, status, crowd size, activists associated with crowds,
nearby buildings, and whether the S3 suite has been ever
alerted. S2 humans can perform two kinds of communication
actions. After selecting an active target from the target list, an
S2 human can (a) press the button “MIDB Query” to query
the simulated Military Intelligence DataBase for additional
information about the target being highlighted. Depending on
the type of the selected target, from MIDB S2 humans can
gather threat level information for an insurgent, recognize
whether an activist with a crowd is a friend or foe, and
update information about buildings nearby an active target;
(b) press the button “Alert to S3” to update S3 suite with new
changes regarding the selected target. (The other two buttons
“Alert to S4” and “Cancel Alert to S4” were not used in this
study; they are reserved for future studies when the S4 suite,

Fig. 4. S3 human-computer interface.

called logistics cell, is considered). The bottom portion of the
interface shows S2’s communication statistics.

Once the S2 operator has informed a target to the S3 suite,
the S3 suite will keep being updated of the dynamic location
information of that target afterward. However, to secure better
team performance, the S2 operator has to update the S3 suite
with situational changes other than locations (e.g., crowd sizes,
nearby buildings) in a timely manner.

3) S2 Agent Decision Automation: For HA teams, an R-
CAST agent automates solely the role of S2 suite.

As depicted in Figure 1, an R-CAST agent has a mental
model, which captures the state of the current situation. For
this experiment, the mental model of the S2 agent includes
information about all the active targets (e.g., threat type, threat
level), and the information needs of the S3 suite.

The S2 agent reacts to an incoming Spot report in the
following manner.

1. The agent updates its mental model about the active
targets accordingly;

2. As described in Section III-B, the S2 agent manages a
decision space with three experience trees corresponding
to the humanitarian, peacekeeping, and combat opera-
tions, respectively. If the new tasking context is different
from the previous tasking context (e.g., from crowds
to insurgents), the agent switches to the corresponding
decision tree (i.e., switching recognition context);

3. The agent uses its inference context to check whether the
state change of a target can impact the S3 suite’s decision
making on target selection and resource allocation. A
significant impact can trigger the agent to take actions
to share the relevant information with S3 (i.e., anchor an
experience and execute the corresponding COA);

4. The agent uses its inference context to check whether
there are any information about the active targets that is
needed by S3 but is still missing (with unknown value).
If so, the agent will take actions to query the MIDB and
share the collected information with S3.

4) S3 Human-Computer Interface: S3 GUI is used for both
HH teams and HA teams. Figure 4 shows a screenshot of S3
GUI. Shown on the left are the context indicator, a list of alerts

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 8

from the S2 suite, and the S3 suite’s current performance.
The bottom-right is a list of tasks issued by the S3 operator.

This allows the human operator to track which unit was
allocated to handle which target, and the task status (newly
issued, done, impossible).

The upper-right is a target list, showing information similar
to the target list on S2 GUI but with three new columns:
‘Priority(value)’, ‘ExpectedUnits’, and ‘TaskID’. The TaskID
column indicates whether a task is already issued for a target;
more information about the task can be obtained by referring to
the task list at the bottom-right. The Priority column displays
the priorities of the active targets (1: low, 2: medium, 3:
high) and the credit values if the corresponding threats can
be cleared. The ExpectedUnits column gives the number of
squad/EOD units required to handle each target. For HA teams,
an S3 agent, acting as a decision aid to the S3 operator, will
use color codings to highlight target priorities, and recommend
the number of squad/EOD units required for each active target.
For HH teams, the S3 operator has to make self judgments
regarding the priorities of active targets (no color coding) and
resource requirements (the ‘ExpectedUnits’ column is blank).
The ‘Available Resource’ table gives all the allocable resources
and their taskloads. An S3 operator can issue 4 types of
operations: monitor/disperse a crowd, capture an insurgent,
and remove an IED.

The S3 human can easily get overloaded when conducting
resource allocation operation under time stress. We thus de-
signed a secondary task for the S3 suite, the performance of
which would be an indicator of how demanding a scenario
is. In the real-world case, when a commander issues a task,
he/she ought to be aware of the potential effects of the
committed operations. In this experiment, when issuing a
task to remove a threat, an S3 operator needs to click the
checkboxes that correspond to the key buildings nearby the
target being considered, if applicable.

5) S3 Agent Decision Recommendation: For HA teams, an
S3 operator together with an R-CAST agent (S3 agent) plays
the role of the S3 suite. To offer highly acceptable aids for S3
operators to make decisions and decision adaptation, the S3
agent is equipped with an expert recommendation model.

The recommendation model has four components. First, the
S3 agent can recommend target priorities to the S3 human
operator using color codings: red for targets with a high
priority, yellow for targets with a medium priority, and green
for targets with a low priority. However, the decision making
task is still high demanding even with the help of color
codings. For example, there may exist multiple targets with
a high priority at the same time. An S3 operator still needs
to make decisions on which target to handle first; this can
largely impact how the situation evolves and the overall team
performance. Moreover, the best target selection may not be
the one with the highest priority due to the uncertainty and
dynamic nature of the problem. For example, the appearance
time of a target is unknown to S3 operators (the longer time
a target has been there, the more likely it can disappear from
the simulation); The locations of targets and friendly units
keep changing as the situation evolves; There are insufficient
available resources for handling a high-priority target. S3

operators need to take all such factors into consideration when
deciding which target to handle.

Second, the S3 agent can remind the S3 operator about
the current resource requirements of each active target (i.e.,
how many more units are needed). Third, the S3 agent can
leverage its inference context to mark the appropriate “effects
of operations” (i.e., key buildings nearby the selected target).

Lastly, based on the following heuristic model, the S3 agent
can recommend resources to the target being highlighted to
support S3 human’s resource allocation behavior.

We use 1, 2, · · · , n to denote resource types; Ro
i to denote

the set of resources of type i; Ri to denote the set of free
resources of type i; and R′i to denote the set of re-assignable
resources of type i. Re-assignable resources are those that
have already been engaged in a task but can be preempted
by another task. The current domain has 2 resource types:
squads and EOD.

Each target places a resource requirement (cf. Table I).
The resource requirement of target t is denoted by rt =
(r1(t), r2(t), · · · , rn(t)), where ri(t) is the number of needs
on resources of type i. For example, rc121 = (2, 0).

Given a target t, if ri(t) > |Ri|, we need to find re-
assignable resources engaged in the on-going tasks. The on-
going tasks can be ordered by priority including tasks with
priorities no more than the new task being considered. Let
target(T) be the target of task T , R(T) be the set of resources
engaged in T . The priority of a task T with respect to a target
t, is determined by its TValue: TValue(t, T) =

TargetValue(t)∑
ri∈rt

wi · ri(t)
× TargetRemainT ime(t)

max{distance(t, γ)|γ ∈ R(T)}
where wi is the weight of resources of type i, representing the
cost of using a resource of type i, and the second factor on the
right represents the chance of success when using resources
engaged in T to handle target t. Here, TargetRemainTime(t)
represents the estimated measure of how long t will remain
before disappearing from the simulation.

Resources engaged in task T will be considered re-
assignable for t if TValue(t, T) > δ ∗TValue(target(T), T),
where a relatively good value for the adjustable variable δ can
be obtained by running pre-experiments.

Let (T1, T2, · · · , Tk) be a list of tasks determined in the
above way relative to target t, and (yT1

i , yT2
i , · · · , yTk

i) be a
list, where y

Tj

i is the set of resources of type i from task Tj .
Then, resources of type i re-assignable for t is R′i(t) =
{

yT1
i (ri(t)− |Ri|) ≤ |yT1

i |⋃
j:1..m y

Tj

i |⋃j:1..m−1 y
Tj

i | < (ri(t)− |Ri|) ≤ |⋃j:1..m y
Tj

i |
Next, given the set Ri(t) of resources of type i available for

target t, resources closest to the target t ought to be selected
first. Let D = (D1, D2, · · · , Dx), where {Di : (1 ≤ i ≤ x)}
is the partition of Ri(t) by the distance of resources to target
t, and Di in D are ordered by distance from near to far. That
is, resources in Di have the same distance to t and they are
closer to t than those in Di+1. Then, closest(Ri(t), x) =
{

select(D1, x) x ≤ |D1|
select(

⋃
j:1..m Dj , x) |⋃j:1..m−1 Dj | < x ≤ |⋃j:1..m Dj |

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 9

which returns x number of resources closest to t, where
select(A, z) returns any one of A’s subset of size z. Here, it
doesn’t matter whether to consider resources in

⋃
j:1..m−1 Dj

first, because at least one will come from Dm, which domi-
nates the time it takes for the resources to reach t’s location
(we assume all the resources move at the same speed).

Now, given a target t and its resource requirement rt =
(r1(t), r2(t), · · · , rn(t)), S3 agent follows the criteria below
to allocate resources for target t. For each resource type i,
(1) if ri(t) ≤ |Ri|, return closest(Ri, ri(t)); (2) if |Ri| <
ri(t) ≤ |Ri ∪R′i(t)|, return Ri ∪ closest(R′i(t), ri(t)− |Ri|).

Actually, in cases when ri(t) > |Ri ∪R′i(t)|, two tasks can
be issued separately to meet the resource requirement of t: one
task employs resources in Ri ∪R′i(t), then issue another task
later when more resources become available. However, this
might confuse matters such that human participants may easily
forget to return to finish those partially committed operations.
We thus left this open: human participants were allowed to
split tasks if they could manage their attention.

However, it is worth noting that the S3 agent’s recommenda-
tions are relative to its knowledge of the current situation. The
S2 (S3) suite updates its knowledge of the dynamic situation
once it gets Spot reports from the Simulation Engine. Because
in this study the Simulation Engine is controlled such that
the Spot reports are sent out every 5s (10s, or 15s), there
is inevitably a difference between the situational information
known by the S3 agent and the real situation known by the
Simulation Engine (which evaluates C2 performance based on
its knowledge). Consequently, the S3 agent’s recommendations
can be inappropriate or incorrect. For example, the resource
allocation to a target t recommended by the S3 agent could
be improved if the S3 agent had predicted that a friendly unit
which is even closer to t will be free in a second. The S3 agent
might make a different recommendation about the effects of
operations should the agent be able to predict that the target
under consideration is moving closer to a key building. The
S3 agent also could make a wrong recommendation about the
effects of operations if the S2 suite does not update the S3
suite with the latest nearby building information. R-CAST
does not support such prediction capability; thus it is still
the S3 operator’s responsibility to judge whether to accept
or override the recommendations from the S3 agent.

We here comment that it is not that such a prediction
capability cannot be implemented, it is that we have to face the
reality that artificial intelligence (agent) is not a panacea; it can
fail in this way or another. This is exactly one of the benefits
of human-agent teamwork: leveraging the strengths of both
to achieve the best possible performance. In this experiment,
being equipped with a map display, an S3 operator has a better
position to predict the trajectory of a moving target; and being
a team member, he/she has the responsibility of correcting the
S3 agent’s recommendations whenever necessary.

B. Human Subjects
In order to recruit participants with a fair degree of mili-

tary C2 knowledge, we chose members of US Army ROTC
(Reserve Officer Training Corps) organization at Penn State
University as the human participants.

We randomly recruited 26 ROTC students and 4 ROTC
Sergeants (Sergeants were used to avoid biased results due
to different levels of military C2 knowledge. The Sergeants
datapoints were further analyzed and were found to be within
the range of students datapoints. Further details appear in the
results section). 10 of the ROTC students were used to form
10 HA teams; 16 of the ROTC students were used to form 8
HH teams, and the 4 Sergeants were used to form another
2 HH teams. Each team was tested using the 9 scenarios
reflecting the nine factorial level combinations of CSF and
TC as described in Section III-C.

C. Dependent Measures

On the 180 runs of the experiment (90 runs for Human-
Human teams and 90 runs for Human-Agent teams), we
measured a number of response variables. For each experiment
run i, we recorded naKi, nbKi, and ncKi— the numbers of
key-insurgents captured with high, medium, and low threats
respectively; naDi, nbDi, and ncDi—the numbers of IEDs
removed with high, medium, and no threats respectively; and
naCi, nbCi, ncCi, and ndCi— the numbers of crowds dispersed
with high, slightly high, medium, and low threats respectively.
Let nKi = naKi + nbKi + ncKi, nDi = naDi + nbDi + ncDi,
nCi = naCi + nbCi + ncCi + ndCi.
The Average Performance Index (API) is defined as:

APIi = (
∑

X∈{K,D,C}

θXi

nXi
)/(nKi + nDi + nCi),

where θKi = 200naKi + 150nbKi + 100ncKi,
θDi = 80naDi + 60nbDi + 0ncDi, and
θCi = 60naCi + 50nbCi + 40ncCi + 20ndCi,

where the weights in computing θKi, θDi, θCi are the credit
values of targets, which are proportional to their degree of dev-
astation and were suggested by domain experts as explained
in Section III-B. The API measure reflects a team’s average
performance across three context (overall competency).

Another performance measure is MAR (Missed-Attention
Rate), which reflects S2 and S3’s joint efforts in paying
attention to the effects of operations.

The summary statistics of the data collected (sample treat-
ment means and standard deviations) is presented in Table III.
The table also provides the summary statistics for variables
KP, DP, and CP, which represent the ratios of key-insurgents,
IEDs, and crowds successfully handled relative to the total
number of key-insurgents, IEDs, and crowds that appeared,
respectively. The scatterplot matrix with LOWESS lines is
given in Figure 5. It clearly indicates that API is highly
correlated with variables KP and CP, which confirmed our
choice of API as the main performance measure in the analysis
of the results.

V. RESULT ANALYSIS

From Table III, we can see that the HH teams suffered from
time stresses (CSF): the mean API measure dropped from
4.748, to 3.208, then to 2.015 as the CSF changed from L, to
M, to H (the measure of MAR has the opposite pattern). This
supports other cognitive studies [24], [25] in general, because

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 10

TABLE III
SUMMARY STATISTICS: MEANS AND STANDARD DEVIATIONS OF RESPONSES FOR EACH TREATMENT

HH HA
TC CSF KP DP CP API MAR KP DP CP API MAR
L H Mean 0.555 0.3003 0.1333 3.324 0.6441 0.7538 0.4184 0.1833 4.460 0.4859

StDev 0.324 0.1190 0.1315 1.565 0.1753 0.1975 0.1191 0.0861 1.022 0.0630
M H Mean 0.4508 0.1704 0.0500 1.500 0.571 0.6991 0.3529 0.0944 2.523 0.2539

StDev 0.2339 0.0904 0.0611 0.771 0.321 0.1673 0.1291 0.0743 0.611 0.1623
H H Mean 0.4545 0.1907 0.0458 1.222 0.6067 0.5661 0.2389 0.0886 1.5173 0.3786

StDev 0.2111 0.0611 0.0604 0.470 0.2002 0.1283 0.0634 0.0746 0.2176 0.1320
Team mean (H) 2.015 0.6074 2.833 0.3728

L M Mean 0.6553 0.2456 0.2206 4.521 0.477 0.8260 0.4546 0.1886 5.480 0.2067
StDev 0.2514 0.1394 0.1989 1.305 0.401 0.1445 0.0997 0.1005 0.844 0.2477

M M Mean 0.6097 0.1567 0.1378 3.163 0.5330 0.7730 0.1817 0.1488 3.779 0.2322
StDev 0.1965 0.0755 0.1087 0.940 0.3008 0.1065 0.0902 0.1203 0.666 0.1747

H M Mean 0.5483 0.1090 0.0547 1.940 0.542 0.6948 0.1984 0.0810 2.329 0.4404
StDev 0.2690 0.0746 0.0649 0.828 0.344 0.1362 0.0752 0.0792 0.421 0.0973

Team mean (M) 3.208 0.5172 3.863 0.2931
L L Mean 0.7310 0.1289 0.2685 6.893 0.333 0.8917 0.1787 0.3324 8.689 0.2517

StDev 0.3003 0.1294 0.1947 1.977 0.333 0.1006 0.1204 0.1232 1.308 0.1976
M L Mean 0.6339 0.0671 0.2022 4.136 0.7369 0.7506 0.1747 0.2564 5.017 0.2952

StDev 0.2451 0.0523 0.1792 1.464 0.2630 0.1011 0.0656 0.1123 0.732 0.1725
H L Mean 0.6500 0.0708 0.1960 3.215 0.471 0.7624 0.0896 0.1682 3.470 0.326

StDev 0.2104 0.0658 0.1206 0.968 0.351 0.1229 0.0743 0.1454 0.800 0.317
Team mean (L) 4.748 0.5137 5.725 0.2911

0
.
7
5

0
.
2
5

0
.
4
3
7
5
0
0

0
.
1
4
5
8
3
3

0
.
5
2
5

0
.
1
7
5

0
.
7
5

0
.
2
5

7
.
7
3
8
1
0

2
.
5
7
9
3
7

0
.
4
3
7
5
0
0

0
.
1
4
5
8
3
3

0
.
5
2
5

0
.
1
7
5

7
.
7
3
8
1
0

2
.
5
7
9
3
7

K

P

D

P

C

P

K
P

A

P

I

D
P
 C
P
 A
P
I

S
c
a
t
t
e
r
p
l
o
t

M
a
t
r
i
x

P
-
V
a
l
u
e

C
e
l
l
:

P
e
a
r
s
o
n

c
o
r
r
e
l
a
t
i
o
n

0
.
0
0
0

0
.
3
0
1

0
.
0
0
0

A
P
I

0
.
7
2
2

0
.
0
7
8

0
.
5
1
8

0
.
0
0
0

0
.
6
0
7

C
P

0
.
2
6
4

-
0
.
0
3
9

0
.
1
6
6

D
P

0
.
1
0
4

K
P

D
P

C
P

Fig. 5. Scatterplot Matrix: API is highly correlated with KP and CP.

both S2 and S3 participants have limits to their cognitive
capacities. While monitoring the situation development from
the Map Display, at the same time S2 participants need to
process Spot reports under time stress, to recognize/ gather
missing information, and to constantly make decisions on
when to share information with whom about what. Similarly,
S3 participants, while being limited by resources and multi-
tasking capacity, need to constantly monitor the status of
active targets, to decide when and how to handle which target
(prioritization, resource (re-)allocation), and to judge whether
to cancel an ongoing task if a situation changes.

From the data collected, we also found that the performance
of the two ROTC-Sergeant teams were not the best among the
10 HH teams. This removed our concern that the results could
be biased if the ROTC students were not representatives of the
population with military C2 experiences. This provides a level
of confidence that at least as far as this particular experiment
is concerned, ROTC students can be taken as having a fair
degree of military C2 knowledge.

From Table III, the mean API measure for HA teams also
dropped from 5.725, to 3.863, then to 2.833 as the CSF

changed from L, to M, to H (the measure of MAR has the
opposite pattern). It also clearly indicates that, compared with
HH C2 teams, the average performance of HA C2 teams has
been improved at each CSF level.

We next examine whether the performance improvement
is statistically significant and assess interaction effects of
treatment factors, if any.

A. Statistical Inference: Model Selection

To conduct statistical inference, one key issue focuses
around the proper selection of statistical models.

Model selection for this study is complicated for two
reasons. First, due to the restricted availability of the pool of
participants, the experiment design resulted in nested sampling
of experiment units and repeated measures of performance.
The ten HH teams used in the experiments are different from
the ten HA teams (we had 9 sets of measures for each team);
hence in the ANOVA model we should have a “team” variable
nested within the team type (TType) variable.

Second, we had repeated measures because each team per-
formed in the experiment for all the nine level combinations of
CSF-TC. Typically, there should be a “washout” time between
repeated measures to avoid carryover effects. However, due to
the participants’ limited schedules the teams had to finish all
9 treatments one after another. Thus, we have to consider such
anomaly of repeated measures in model selection. However,
the complexity of dealing with repeated measures can be
avoided if it can be shown that there is no presence of autocor-
relation in adjacent observations. The Durbin-Watson statistic
[26] can be used to test for the presence of autocorrelation in
residuals of time series data. To be sure of the randomness
of the observations from the same team, we also use the runs
test to check whether the residuals are independent. If both the
Durbin-Watson test and the runs test confirm that the residuals
are statistically independent, we can proceed as though there
is no repeated measure in the observations.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 11

Furthermore, we used ten randomly formed HH teams and
ten randomly formed HA teams. However, the specific teams
that participated in the experiment are not of interest to us. We
hope the inference from the data are not only for the teams
used, but for all the possible teams in the populations. So,
below we will use mixed-effects model, with factors TType,
CSF, and TC having fixed levels, and the factor ‘team’ having
randomly selected levels.

B. The Primary Performance Measure: API

We first use the Durbin-Watson test and the runs test to
check whether the residuals of the API measures in time series
are statistically independent. Table IV gives the results of the
Durbin-Watson test and the runs test, where both tests suggest
that there exists no serial correlation except for HH team 2.
We thus can assume the residuals are statistically independent
and build our model as though there are no repeated measures.
We use the following ANOVA model:

yijmnk = µ + αi + βj + γm + δn(i) + αβij + αγim+
βγjm + βδjn(i) + γδmn(i) + αβγijm + εijmnk,

(1)

where, yijmnk: the response,
µ: Overall mean, an unknown constant,
αi: An effect due to the ith level of factor TType,
βj : An effect due to the jth level of factor CSF,
γm: An effect due to the mth level of factor TC,
δn(j): The nth level of factor team is nested in the ith level
of TType,
αβij : An interaction effect of the ith level of TType with the
jth level of CSF,
αγim: An interaction effect of the ith level of TType with the
mth level of TC,
βγjm: An interaction effect of the jth level of CSF with the
mth level of TC,
βδjn(i): An interaction effect of the jth level of CSF with the
nth level of team nested in the ith level of TType,
γδmn(i): An interaction effect of the mth level of TC with the
nth level of team nested in the ith level of TType,
αβγijm: Three-way interactions,
εijmnk: A random error associated with the response from the
kth replication receiving the ith, jth, mth, and nth level of
TType, CSF, TC, and team.

We next need to verify the assumptions of ANOVA are at
least roughly satisfied in order to avoid misleading results.
In particular, we should check (1) We have independent
and random samples from all groups, (2) The samples are
taken from Normal distributions, and (3) The variances of
the different groups are all equal. Assumption (1) is met
because participants were randomly assigned to either be in
HH or HA teams, and team members are randomly assigned.
Assumption (2) can be checked using normal probability plot
of residuals, and assumption (3) can be checked by plotting the
residual errors verse their fitted values. Figure 6(a,b) gives the
plots after fitting the API measures to Model (1). The normal
probability plot of residuals of API is roughly a line, and the
plot of the residual errors versus their fitted values seems to

TABLE V
ANOVA TABLE FOR API (AVERAGE PERFORMANCE INDEX)

Source DF SS MS F P
TType 1 30.0227 30.0227 5.99 0.025
CSF 2 240.7284 120.3642 169.44 0.000
TC 2 335.4676 167.7338 247.78 0.000
Team(TType) 18 90.1490 5.0083 N/A N/A
TType*CSF 2 0.7792 0.3896 0.55 0.583
TType*TC 2 7.2640 3.6320 5.37 0.009
CSF*TC 4 26.4677 6.6169 14.41 0.000
CSF*Team(TType) 36 25.5736 0.7104 1.55 0.058
TC*Team(TType) 36 24.3696 0.6769 1.47 0.081
TType*CSF*TC 4 1.6401 0.4100 0.89 0.473
Error 72 33.0507 0.4590
Total 179 815.5125

TABLE VI
MEANS OF API PERFORMANCE BY TC×CSF

4H 3H 4M 4L 3M 2H 3L 2M 2L
1.37 2.01 2.13 3.34 3.47 3.89 4.58 5.00 7.79

Significant difference exists when difference ≥ 4.47
√

1.075
20

≈ 1.036.

have a constant vertical spread. We thus can proceed as if the
assumptions are all met. Table V gives the ANOVA output for
the API response provided by Minitab.

The ANOVA output indicates that there are two-way inter-
actions between CSF levels and TC levels, and between TType
levels and TC levels. Figures 7(a-c) plot the interaction effects
of TType*CSF, TType*TC, and CSF*TC, respectively. There
is no significant TType*CSF interactions, as can be confirmed
by the roughly parallel lines in Fig. 7(a). However, it does
indicate that HA teams performed significantly better than
HH teams at each CSF level. This suggests that cognitive
agents can play a critical role in alleviating the impact of
human’s cognitive capacity on the performance of decision
making involving multiple contexts. Fig. 7(a) also shows a
performance drop for both HH and HA teams as the context
switching frequency increased: both suffered more under more
time-stressed situations. Fig. 7(b) shows that the performance
of both HH teams and HA teams were affected considerably
by task complexity, but the slope for HH teams is less than
the HA teams. It suggests that HA teams are more sensitive
to the changes of tasking situations.

The Tukey’s Honest Significant Difference (HSD) procedure
[26] can be employed to answer the third research problem
(patterns of difference of C2 team performance at different
level combinations). Because there are insignificant terms in
Table V, by dropping insignificant terms and pooling, we can
perform a conservative analysis using a new model:

yijk = µ + αi + πj + εijk, (2)

where αi is the effect due to the ith level of TType, and πj is
the effect due to the jth level of Scenario (a variable that has
9 levels, corresponding to the 9 combinations of CSF-TC).

It is checked that the assumptions of ANOVA were not
violated for this new model. The ANOVA output shows that
the Scenario variable is highly significant (n = 20,MSE =
1.075, p-value < 0.001). The means of the nine levels are
given ascendingly in Table VI. If the mean difference of two

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 12

TABLE IV
SERIAL CORRELATION TEST FOR API: NO APPARENT SERIAL CORRELATION IF 1.5 ≤ d ≤ 2.5 OR p < 0.05

Statistic TType Team1 Team2 Team3 Team4 Team5 Team6 Team7 Team8 Team9 Team10 Average
Durbin-Watson test d HH 3.14 3.12 2.21 1.85 2.32 2.06 2.17 2.38 1.64 2.35 2.33

HA 2.19 2.49 2.34 2.17 2.01 2.26 2.74 1.83 2.02 1.90 2.11
Runs test (p-value) HH 0.4142 0.0128 0.0128 0.688 0.688 0.4142 0.0128 0.688 0.688 0.688 0.688

HA 0.688 0.4142 0.688 0.688 0.688 0.0128 0.688 0.688 0.4142 0.4142 0.688

1
0
-
1

3

2

1

0

-
1

-
2

-
3

N

o
r

m

a
l

S

c
o

r
e

R
e
s
i
d
u
a
l

N
o
r
m
a
l

P
r
o
b
a
b
i
l
i
t
y

P
l
o
t

o
f

t
h
e

R
e
s
i
d
u
a
l
s

(
r
e
s
p
o
n
s
e

i
s

A
P
I
)

(a)

1
0
5
0

1

0

-
1

F
i
t
t
e
d

V
a
l
u
e

R

e
s

i
d

u
a

l

R
e
s
i
d
u
a
l
s

V
e
r
s
u
s

t
h
e

F
i
t
t
e
d

V
a
l
u
e
s

(
r
e
s
p
o
n
s
e

i
s

A
P
I
)

(b)

0
.
4
0
.
3
0
.
2
0
.
1
0
.
0
-
0
.
1
-
0
.
2
-
0
.
3
-
0
.
4

3

2

1

0

-
1

-
2

-
3

N

o
r

m

a
l

S

c
o

r
e

R
e
s
i
d
u
a
l

N
o
r
m
a
l

P
r
o
b
a
b
i
l
i
t
y

P
l
o
t

o
f

t
h
e

R
e
s
i
d
u
a
l
s

(
r
e
s
p
o
n
s
e

i
s

M
A
R
)

(c)

1
.
0
0
.
5
0
.
0

0
.
4

0
.
3

0
.
2

0
.
1

0
.
0

-
0
.
1

-
0
.
2

-
0
.
3

-
0
.
4

F
i
t
t
e
d

V
a
l
u
e

R

e
s

i
d

u
a

l

R
e
s
i
d
u
a
l
s

V
e
r
s
u
s

t
h
e

F
i
t
t
e
d

V
a
l
u
e
s

(
r
e
s
p
o
n
s
e

i
s

M
A
R
)

(d)

Fig. 6. (a) Residuals of API follow a normal distribution; (b) Residuals of API vs. fitted values have a constant vertical spread; (c) Residuals of MAR follow
a normal distribution; and, (d) Residuals of MAR vs. fitted values have a constant vertical spread.

L M H
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6
API Verse CSF

Context Switching Frequency

A
ve

ra
ge

 P
er

fo
rm

an
ce

 In
de

x

HA
HH

(a)

L M H
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Task Complexity

A
ve

ra
ge

 P
er

fo
rm

an
ce

 In
de

x

TC * TType interaction effects on API

HA
HH

(b)

L M H
1

2

3

4

5

6

7

8
TC * CSF interaction effects on API

Context Switching Frequency

A
P

I

TC = 2
TC = 3
TC = 4

(c)

HA HH

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Boxplot MAR * TType

M
is

se
d−

A
tte

nt
io

n
R

at
e

Team Type

(d)

L M H
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Task Complexity

M
is

se
d−

A
tte

nt
io

n
R

at
e

MAR * TC

HA
HH

(e)

L M H
0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

Task Complexity

M
is

se
d−

A
tte

nt
io

n
R

at
e

TC * CSF interaction effects on MAR

CSF=L
CSF=M
CSF=H

(f)

Fig. 7. (a) API verse CSF; (b) Interaction effects of TC*TType on API; (c) Interaction effects of TC*CSF; (d) Boxplot of MAR by TType; (e) Interaction
effects of TC*TType on MAR; and, (f) Interaction effects of TC*CSF on MAR.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 13

TABLE VII
ANOVA TABLE FOR MAR (MISSED-ATTENTION RATE)

Source DF SS MS F P
TType 1 2.32135 2.32135 24.05 0.000
CSF 2 0.29849 0.14925 1.45 0.249
TC 2 0.11370 0.05685 1.15 0.329
Team(TType) 18 1.73753 0.09653 N/A N/A
TType*CSF 2 0.00128 0.00064 0.01 0.994
TType*TC 2 0.35968 0.17984 3.63 0.037
CSF*TC 4 0.85755 0.21439 4.75 0.002
CSF*Team(TType) 36 3.71780 0.10327 2.29 0.001
TC*Team(TType) 36 1.78252 0.04951 1.10 0.362
TType*CSF*TC 4 0.18898 0.04724 1.05 0.389
Error 72 3.24932 0.04513
Total 179 14.62819

levels is greater than 1.036, we can say the corresponding
population means are significantly different. In conclusion, we
have that the performance on (4H, 3H, 4M) is significantly
worse than (4L, 3M, 2H, 3L, 2M, 2L). Significant difference
also includes (4L, 3M) <3L<2L, and 2H <(2M, 2L).

C. Performance of the Secondary Task: MAR

Using similar inference procedures, we analyze the per-
formance measures on Missed-Attention Rate. We expect to
get results consistent to the analysis of API, because the two
measures are negatively correlated (the Pearson correlation of
API and MAR is −0.233 with P-Value = 0.002).

The ANOVA output for MAR is given in Table VII.
Figures 7(d-f) plot the team type difference, the interaction
effects of TType*TC, and CSF*TC, respectively. Clearly, HA
teams missed significant less attentions than HH teams. The
interaction effect of TType*TC in Fig. 7(e) indicates that when
task complexity switched from L to M, the contribution of
agents (HA teams) in reducing MAR became more salient. In
other words, C2 teams could benefit more from RPD-agents
under medium task complexity. The potential reason is that
S3 participants in HH teams have to balance their attention.
As the situations became more demanding (with more active
targets), less attention was paid to the effects of operations,
which led to increased MAR.

However, it becomes more interesting when task complexity
changed from M to H: HH teams’ MAR decreased while HA
teams’ MAR increased. The main reason, we believe, is that S3
human participants relied too much on the recommendations
from agents rather than on their own judgment of the potential
evolvement of the situation. Because of the nature of the
simulation, Spot reports were available every certain time
interval (15, 10, 5 sec). Thus, the S3 suite had to consider
the latency of target location information in determining the
appropriate effects of operations. S3 humans in HH teams
relied on themselves to judge the movement of a target,
which largely compensated for the latency of information
and improved their performance in identifying the effects of
operations. However, S3 humans in HA teams tended to rely
too much on the recommendations from agents, which could
be wrong because S3 agents in HA teams, unknown to their
human peers, made recommendations without considering the
latency of information. The issue manifested itself when there

were too many active targets (task complexity is H). This
to some extent indicates that our task design is useful for
investigating human-agent collaboration issues, and suggests
that the best possible human-agent team performance can only
be achieved when both human and agents contribute their best.

VI. CONCLUSION

Multi-context real-time decision making is an extremely
challenging problem faced by various real-world application
domains. It can be very complex especially when human
factors and computing technologies are mutually constraining
in their interaction.

We have started to address this challenge associated with
C2 teams operating in complex urban environments, using
the R-CAST cognitive agent architecture as human operators’
teammates and decision aids. This paper, focused on the
coupling of cognitive agent technology and human-centered
teamwork, reported our experimental studies about the impact
of RPD-enabled agents on C2 teams’ performance in multi-
context decision making under time stress. It has been shown
in the experiment that the performance of Human-Agent teams
was significantly better than pure human teams, and different
level combinations of CSF and TC had significant effects on
C2 team performance. Also, as far as the average performance
index (API) was concerned, the CSF and TC factors had
significant effects on the performance of C2 teams.

The experiment represents an important step forward in
uncovering the nature of real-world problems, because the
environment simulated the real domain and the human partic-
ipants were recruited from Army ROTC students. This study
suggests that C2 team performance, while still limited by
human cognitive capacity, could be largely improved when
human operators are assisted by cognitive agents empowered
with expert experiences and proactive information gather-
ing/sharing capabilities.

Intelligence analysts need tools and techniques to help
protect themselves from avoidable errors [27], [28]. Some
human “errors” rest on their fundamental cognitive capacities.
Their performance cannot be improved by simply providing
a better human user interface without employing appropriate
technologies as cognitive aids. Our experiment demonstrated
that RPD-enabled agents, to some extent, can serve as one
such tool to achieve reduced cognitive load, enhanced situation
awareness, and positive human-agent collaboration.

In real-world applications where information availability
and credibility is concerned, it is expected that C2 teams
with both the S2 and the S3 operators assisted by an R-
CAST agent could outperform either of the two team structures
considered in this paper, because S2 human’s ability to reason
about imperfect information can be fully exploited. This is
worthwhile to consider in future studies.

ACKNOWLEDGMENT

The authors would like to thank John Dumer, Holly Ingham
and Mark Mittrick from US Army Research Lab at Aberdeen
Proving Ground for their help in designing C2 tasks and the
supports on SA Map Displays. We are also grateful to the
anonymous reviewers for their constructive comments.

IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, PART A: SYSTEMS AND HUMANS 14

REFERENCES

[1] E. Horvitz and M. Barry, “Display of information for time-critical deci-
sion making,” in Proceedings of the Eleventh Conference on Uncertainty
in Artificial Intelligence. Morgan Kaufmann, 1995, pp. 296–305.

[2] J. A. Cannon-Bowers and E. E. Salas, “Individual and team decision
making under stress: Theoretical underpinnings,” in Making decisions
under stress: Implications for individual and team training, J. A.
Cannon-Bowers and E. Salas, Eds. APA Press, 1998, pp. 17–38.

[3] S. Noh and P. Gmytrasiewicz, “Flexible multi-agent decision making
under time pressure,” IEEE Transactions on Systems, Man and Cyber-
netics, Part A: Systems and Humans, vol. 35, no. 5, pp. 697–707, 2005.

[4] D. Georgiev, P. T. Kabamba, and D. M. Tilbury, “A new model for
team optimization: The effects of uncertainty on interaction,” IEEE
Transactions on Systems, Man, and Cybernetics, Part A, vol. 38, no. 6,
pp. 1234–1247, 2008.

[5] X. Fan, S. Sun, B. Sun, G. Airy, M. McNeese, and J. Yen, “Collaborative
RPD-enabled agents assisting the three-block challenge in C2CUT,” in
BRIMS’05: Proceedings of the 2005 Conference on Behavior Represen-
tation in Modeling and Simulation, 2005, pp. 113–123.

[6] X. Fan, S. Sun, M. McNeese, and J. Yen, “Extending the recognition-
primed decision model to support human-agent collaboration,” in AA-
MAS ’05: Proceedings of the fourth international joint conference on
Autonomous agents and multiagent systems. ACM Press, 2005, pp.
945–952.

[7] E. Norling, “Folk psychology for human modelling: Extending the BDI
paradigm,” in AAMAS ’04: International Conference on Autonomous
Agents and Multi Agent Systems, 2004, pp. 202–209.

[8] E. Norling, L. Sonenberg, and R. Ronnquist, “Enhancing multi-agent
based simulation with human-like decision making strategies,” in Pro-
ceedings of the Second International Workshop on Multi-Agent Based
Simulation, S. Moss and P. Davidsson, Eds., 2000, pp. 214–228.

[9] J. Sokolowski, “Enhanced military decision modeling using a multiagent
system approach,” in BRIMS’03: Proceedings of the Twelfth Conference
on Behavior Representation in Modeling and Simulation, 2003, pp. 179–
186.

[10] W. Warwick, S. McIlwaine, R. Hutton, and P. McDermott, “Developing
computational models of recognition-primed decision making,” in Pro-
ceedings of the tenth conference on Computer Generated Forces, 2001,
pp. 232–331.

[11] G. A. Klein, “Recognition-primed decisions,” in Advances in man-
machine systems research, W. B. Rouse, Ed. Greenwich, CT: JAI
Press, 1989, vol. 5, pp. 47–92.

[12] ——, “Recognition-primed decision making,” in Sources of power: How
people make decisions. MIT Press, 1998, pp. 15–30.

[13] P. R. Cohen and H. J. Levesque, “Teamwork,” Nous, vol. 25, no. 4, pp.
487–512, 1991.

[14] M. Endsley, “Toward a theory of situation awareness in dynamic
systems,” Human Factors, vol. 37, pp. 32–64, 1995.

[15] J. M. Bradshaw, M. Sierhuis, A. Acquisti, P. Feltovich, R. Hoffman,
R. Jeffers, D. Prescott, N. Suri, A. Uszok, and R. Van Hoof, “Adjustable
autonomy and human-agent teamwork in practice: An interim report on
space applications,” in Agent Autonomy, H. Hexmoor, R. Falcone, and
C. Castelfranchi, Eds. Kluwer, 2003, pp. 243–280.

[16] T. L. Lennox, T. Payne, S. K. Hahn, M. Lewis, and K. Sycara,
“MokSAF: How should we support teamwork in human-agent teams?”
Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, Tech.
Rep. CMU-RI-TR-99-31, September 1999.

[17] S. Slade, “Case-based reasoning: A research paradigm,” AI Magazine,
vol. 12, no. 1, pp. 42–55, 1991.

[18] A. Aamodt and E. Plaza, “Case-based reasoning: Foundational issues,
methodological variations, and system approaches,” AI Communications,
vol. 7, no. 1, pp. 39–59, 1994.

[19] A. Krause, “Learning and herding using case-based decisions with local
interactions,” IEEE Transactions on Systems, Man, and Cybernetics, Part
A, vol. 39, no. 3, pp. 662–669, 2009.

[20] J. A. Cannon-Bowers, E. Salas, and S. Converse, “Cognitive psychology
and team training: Training shared mental models and complex systems,”
Human Factors Society Bulletin, vol. 33, pp. 1–4, 1990.

[21] X. Fan, J. Yen, and R. A. Volz, “A theoretical framework on proactive
information exchange in agent teamwork,” Artificial Intelligence, vol.
169, pp. 23–97, 2005.

[22] X. Fan, R. Wang, S. Sun, J. Yen, and R. A. Volz, “Context-centric
needs anticipation using information needs graphs,” Applied Intelligence,
vol. 24, pp. 75–89, 2006.

[23] X. Fan, J. Yen, M. Miller, T. Ioerger, and R. A. Volz, “MALLET:a
multi-agent logic language for encoding teamwork,” IEEE Transactions
on Knowledge and Data Engineering, vol. 18, no. 1, pp. 123–138, 2006.

[24] C. D. Wickens, “Multiple resources and performance prediction,” Theo-
retical Issues in Ergonomics Science, vol. 3, no. 2, pp. 159–177, 2002.

[25] G. Kuk, M. Arnold, and F. Ritter, “Effects of light and heavy workload
on air traffic tactical operations: a hazard rate model,” Ergonomics,
vol. 42, no. 9, pp. 1133–1148, 1999.

[26] R. L. Ott and M. T. Longnecker, An Introduction to Statistical Methods
and Data Analysis. Duxbury Press, 2001.

[27] A. Tversky and D. Kahneman, “Judgement under uncertainty: Heuristics
and biases,” Science, vol. 185, pp. 1124–1131, September 1974.

[28] R. J. Heuer, Psychology of Intelligence Analysis. Center for the Study
of Intelligence, 1999.

Xiaocong Fan is currently an Assistant Professor of
Electrical and Computer Engineering at the Behrend
College, The Pennsylvania State University. He re-
ceived his Ph.D. degree in Software Engineering
from Nanjing University, China in 1999. He pre-
viously conducted his Post-Doctoral research at the
Pennsylvania State University (2002-2007), and at
the Abo Akademi University, Finland (2000-2002).
He recently focuses his research on Human-Centered
Computing, Multi-agent systems, Cognitive model-
ing, Knowledge Management, and Service-oriented

architectures. He is a Senior Member of IEEE.

Machael McNeese is currently a Professor of Infor-
mation Sciences and Technology at the Pennsylvania
State University. He received his Ph.D. in Cognitive
Science from Vanderbilt University. McNeese stud-
ies human interaction with information technology
in complex environments, particularly collaborative
systems that bring together the confluences of cog-
nition, computation, collaboration, and context for
given fields of practice - deriving advanced human-
computer interfaces through innovations of affec-
tive computing, artificial intelligence, and computer-

supported cooperative work perspectives.

Bingjun Sun received his Ph.D. in Computer Science and Engineering from
the Pennsylvania State University in 2008. His main research interests include
data mining, search engines, and graph information retrieval.

Timothy Hanratty is a senior computer scientist at the US Army Research
Laboratory. His professional interest focuses on applied research and devel-
opment in the areas of knowledge engineering and advance decision and
collaborative technologies. Hanratty received his BS in Computer Science
from Towson University and his MS from Johns Hopkins University.

Laurel Allender is currently the Director of the U.S. Army Research
Laboratory’s Human Research and Engineering Directorate (ARL-HRED).
She received her Ph.D. in psychology from Rice University in 1987. Her
recent research thrusts include research and development of human behavior
representations, cognitive neuroscience methods, human-robot-system-team
interaction, and secure mobility issues for vehicle-mounted crews. She is a
member of the Human Factors and Ergonomics Society (HFES), currently
is Co-Chair of the Conference on Behavior Representation in Modeling and
Simulation (BRIMS).

John Yen is currently the University Professor of
Information Sciences and Technology at the Penn-
sylvania State University. He received his Ph.D. in
Computer Science from the University of California,
Berkeley in 1986. Before joining Penn State in
2001, he was a Professor of Computer Science at
Texas A&M University and the Director of Center
for Fuzzy Logic and Intelligent Systems Research.
His research has focused on developing theories
and architectures for multi-agent systems to support
information sharing and decision makings of human

teams. He is a member of Editorial Board of several international journals on
intelligent systems. He received an NSF Young Investigator Award in 1992
and he is a Fellow of IEEE.

